2.3e: Exercises - Transformations

Answers to Odd Exercises: 7. The graph of \(f(x+43)\) is a horizontal shift to the left \(43\) units of the graph of \(f\). 9. The graph of \(f(x-4)\) is a horizontal shift to the right \(4\) units of the graph of \(f\). 11. The graph of \(f(x)+8\) is a vertical shift up \(8\) units of the graph of \(f\). 13. The graph of \(f(x)−7\) is a vertical shift down \(7\) units of the graph of \(f\). 15. The graph of \(f(x+4)−1\) is a horizontal shift left \(4\) units and vertical shift down \(1\) unit of the graph of \(f\). 17. The graph of \(g\) is a vertical reflection (across the x-axis) of the graph of \(f\). 19. The graph of \(g\) is a vertical stretch by a factor of 4 of the graph of \(f\). 21. The graph of \(g\) is a horizontal compression by a factor of \(\frac\) of the graph of \(f\). 23. The graph of \(g\) is a horizontal stretch by a factor of 3 of the graph of \(f\). 25. The graph of \(g\) is a horizontal reflection across the y-axis and a vertical stretch by a factor of 3 of the graph of \(f\).

C: Graph transformations of a basic function

Exercise \(\PageIndex\) \( \bigstar\) Begin by graphing the basic quadratic function \(f(x)=x^2\). State the transformations needed to apply to \(f\) to graph the function below. Then use transformations to graph the function.

27. \(g(x) = x^ + 1\) 28. \(g(x) = x^ − 4\) 29. \(g(x) = (x − 5)^\) 30. \(g(x) = (x + 1)^\) 31. \(g(x) = (x − 5)^ + 2\) 32. \(g(x) = (x + 2)^ − 5\) 33. \(f(t)=(t+1)^2−3\) 34. \(f ( x ) = - ( x + 2 ) ^ < 2 >\) 35. \(f ( x ) = - x ^ < 2 >+ 6\) 36. \(g ( x ) = - 2 x ^ < 2 >\) 37. \(g(x)=4(x+1)^2−5\) 38. \(g(x)=5(x+3)^2−2\) 39. \(h ( x ) = \tfrac < 1 > < 2 >( x - 1 ) ^ < 2 >\) 40. \(h ( x ) = \tfrac < 1 > < 3 >( x + 2 ) ^ < 2 >\) 41. \(f ( x ) = ( -\tfracx - 3 ) ^ 2 + 1\) 42. \(g(x)=(-2x+3)^2 -4 \)

\( \bigstar\) Begin by graphing the square root function \(f(x)=\sqrt\). State the transformations needed to apply to \(f\) to graph the function below. Then use transformations to graph the function.

43. \(g(x) = \sqrt − 5\) 44. \(g(x) = \sqrt\) 45. \(g(x) = \sqrt + 1\) 46. \(g(x) = \sqrt + 3\) 47. \(a(x)=\sqrt\) 48. \(m(t)=3-\sqrt\) 49. \(h ( x ) = \sqrt < - x >+ 2\) 50. \(g ( x ) = - \sqrt < x >+ 2\) 51. \(g ( x ) = - \frac < 1 > < 2 >\sqrt < x - 3 >\) 52. \(h ( x ) = - \sqrt < x - 2 >+ 1\) 53. \(f ( x ) = 4 \sqrt < x - 1 >+ 2\) 54. \(f ( x ) = - 5 \sqrt < x + 2 >\) 55. \(k(x) = \sqrt - 1\) 56.1 \(a(x) = \sqrt x - 4> \) 56.2 \(b(x) = \sqrt+2 \)

\( \bigstar\) Begin by graphing the absolute value function \(f(x)=| x |\). State the transformations needed to apply to \(f\) to graph the function below. Then use transformations to graph the function.

57. \(h(x) = |x + 4|\) 58. \(h(x) = |x − 4|\) 59. \(h(x) = |x − 1| − 3\) 60. \(h(x) = |x + 2| − 5\) 61. \(g ( x ) = - | x - 1 |\) 62. \(h(x)=|x−1|+4\) 63. \(f ( x ) = - 3 | x |\) 64. \(f ( x ) = - | x | - 3\) 65. \(h(x)=−2|x−4|+3\) 66. \(n(x)=\dfrac|x−2|\) 67. \(h ( x ) = | - 3 x + 4 | - 2\) 68. \(g(x) = | \tfracx-2| + 1 \)

\( \bigstar\) Begin by graphing the standard cubic function \(f(x) = x^3 \). State the transformations needed to apply to \(f\) to graph the function below. Then use transformations to graph the function.

69. \(h(x) = (x − 2)^\) 70. \(h(x) = x^ + 4\) 71. \(h(x) = (x − 1)^ − 4\) 72. \(h(x) = (x + 1)^ + 3\) 73. \(g ( x ) = - ( x + 2 ) ^ < 3 >\) 74. \(k(x)=(x−2)^3−1\) 75. \(g ( x ) = - x ^ < 3 >+ 4\) 76. \(m(x)=\tfracx^3\) 77. \(g ( x ) = - \frac < 1 > < 4 >( x + 3 ) ^ < 3 >- 1\) 78. \(q(x)=\big(\tfracx\big)^3+1\) 79. \(p(x)=\big(\tfracx\big)^3−3\)

\( \bigstar\) Begin by graphing the appropriate parent function : the basic cube root function \(f(x)=\sqrt[3]\), constant function \(f(x)=0\), or linear function \(f(x)=x\). Then use transformations of this graph to graph the given function.

81. \(g( x ) = \sqrt [ 3 ] -1\) 82. \(g( x ) = \sqrt [ 3 ] < x - 1 >\) 83. \(g( x ) = \sqrt [ 3 ] < x - 2 >+ 6\) 84. \(g( x ) = \sqrt [ 3 ] < x + 8 >- 4\) 84.1 \(g( x ) = \sqrt [ 3 ] < -x + 3 >- 2\) 84.1 \(g( x ) = - \sqrt [ 3 ] < x - 1 >+ 2\) 85. \(g ( x ) = -2 \sqrt [ 3 ] < x + 3 >+ 4\) 86. \(g ( x ) = \sqrt [ 3 ] - 1\) 87. \(f(x) = x + 3\) 88. \(h ( x ) = - 2 x + 1\) 89. \(g(x) = −4\)

\( \bigstar\) Begin by graphing the basic reciprocal function \(f(x)=\frac\). State the transformations needed to apply to \(f\) to graph the function below. Then use transformations to graph the function.

91. \(f(x) = \dfrac\) 92. \(f(x) = \dfrac\) 93. \(f(x) = \dfrac + 5\) 94. \(f(x) = \dfrac − 3\) 95. \(f(x) = \dfrac − 2\) 96. \(f(x) = \dfrac + 3\) 97. \(f ( x ) = - \dfrac < 1 >< x + 2 >\) 98. \(f ( x ) = - \dfrac < 1 >< x >\) 99.\(p( x ) = - \dfrac < 1 > < x + 1 >+ 2\) 100.1 \(a(x) = \dfrac -5 \) 100.2 \(b(x) = \dfrac +4 \)
Answers to Odd Numbered Exercises for the Squaring Function: Squaring Function
27. \(y = x^\); Shift up \(1\) unit; domain: \(ℝ\); range: \([1, ∞)\) 0e393f0d6e151259a123b1e505dec86b.png 29. \(y = x^\); Shift right \(5\) units; domain: \(ℝ\); range: \([0, ∞)\) 8fc7f879a8ba5f12d0b98f348e5adadb.png 31. \(y = x^\); Shift right \(5\) units and up \(2\) units; domain: \(ℝ\); range: \([2, ∞)\) 57a5fd7bcf0e225b10961c6534cd4545.png
33. Shift left \(1\) unit and down \(3\) units; Graph of \(f(t)\).
\(f(t)=(t+1)^2−3\)
#35 Reflect over x-axis, up \(6\) units. 2.3E graph #35.png 37 \(f(x)=x^2\) is shifted to the left \(1\) unit, stretched vertically by a factor of \(4\), and shifted down \(5\) units. 2.3E graph #37.png
39. Shift right \(1\) unit, and vertically shrink by a factor of \( \frac\) ba1195d282dfeb1b813eeec2a0ff6e74.png #41 Shift right \(3\), reflect over \(y\)-axis, horizontally stretch by a factor of \(2\), up \(1\) units. 2.3E graph #41.png for # 41, if \(f ( x ) = ( -\tfracx - 3 ) ^ 2 + 1\) is rewritten as \(f ( x ) = ( -\tfrac(x + 6) ) ^ 2 + 1\) , then the transformations would be horizontal stretch by a factor of 2, reflect in \(y\)-axis (no change), left 6, up 1.
Answers to Odd Numbered Exercises for the Square Root Function Square Root Function
43. \(y = \sqrt\); Shift down \(5\) units; domain: \([0, ∞)\); range: \([−5, ∞)\) 457665c1ea5709240bd4c6e1685a1985.png 45. \(y = \sqrt\); Shift right \(2\) units and up \(1\) unit; domain: \([2, ∞)\); range: \([1, ∞)\) da6d3f21b303aeb0b29fe4975b48a64f.png 47 The graph of \(f(x)=\sqrt\) is shifted left \(4\) units and then reflected across the \(y\)-axis. 2.3E graph #47.png
49. Reflect over \(y\)-axis, up \(2\) 73fbbd2cc539ff2ab99df22497167aec.png 51. Right \(3\), Reflect over \(x\) axis, Vertically compressed by a factor of \(1/2\). 576a64916f5e6c8c4b851efadf07189d.png 53. Right 1, Vertically stretched by a factor of \(4\), up \(2\) 3a6abc9abd61596a77ecfe672f89976d.png #55 Horizontal compression by \(1/2\), shift left \(2.5\), down \(1\) unit. 2.3E graph #55.png
Answers to Odd Numbered Exercises for the Absolute Value Function: Absolute Value Function
57. \(y = |x|\); Shift left \(4\) units; domain: \(ℝ\); range: \([0, ∞)\) 86a1d10b4aad0ab79bc2c8dd55bf4f38.png. 59. \(y = |x|\); Shift right \(1\) unit and down \(3\) units; domain: \(ℝ\); range: \([−3, ∞)\) 424b66df0df22a96fd88c4957413d44e.png. 61. Right \(1\), Reflect over \(x\)-axis 8e5290466d22bfaad7a33f4ffcc1c2d0.png.
63. Reflect over \(x\)-axis, vertically stretch by a factor of \(3\) b03918836eb8805c137b8a53dc8d07ff.png 65 The graph of \(f(x)=|x|\) is shifted horizontally \(4\) units to the right, stretched vertically by a factor of \(2\), reflected across the horizontal axis, then shifted up \(3\) units. 2.3E graph #65.png 67. \(h(x) = |-3(x-\tfrac)| -2 \) \( \longrightarrow\) Horizontally compress by a factor of \(\tfrac\), right \( \tfrac\), down \(2\) 2.3E graph #67.png
Answers to Odd Numbered Exercises for the Cubing Function Cubing Function
69. \(y = x^\) ; Shift right \(2\) units; domain: \(ℝ\); range: \(ℝ\) 01b74b05906d95ff14c5aa6de0ae7b4f.png 71. \(y = x^\); Shift right \(1\) unit and down \(4\) units; domain: \(ℝ\); range: \(ℝ\) a4f584febcd95dc5ef92bbe2ef80df7c.png 73. Left \(2\) units, reflect over x-axis 87909d16e900cb252e880491550fd960.png
75. Reflect over x-axis, up \(4\) units 92bf8584935a01fd897e3af4c08fa4fd.png 77. Left \(3\) units, reflect over x-axis, vertically shrink by a factor of \(\frac \), down \(1\) unit 79. Stretch horizontally by a factor of \(3\) and shift vertically downward by \(3\) units. 2.3E graph #79.png

Answers to Odd Numbered Exercises for the Cube Root, Linear and Constant Functions Cube Root, Linear, Constant Functions

81. \(y = \sqrt [ 3 ] < x >\); Shift down \(1\) 2.3E graph #81.png 83. \(y = \sqrt [ 3 ] < x >\); Shift up \(6\) units and right \(2\) units; domain: \(ℝ\); range: \(ℝ\) 2.3E graph #83.png 85. \(y = \sqrt [ 3 ] < x >\); Left \(3\), reflect over \(x\)-axis, vertically stretch by a factor of \(2\), up \(4\). 2.3E graph #85.png
87. \(y = x\); Shift up \(3\) units; domain: \(\mathbb\); range: \(\mathbb\) ed14f13811bfb7c397b768ab1e6d718a.png 89. Basic graph \(y = −4\); domain: \(ℝ\); range: \(\\) dec428893d68980da985eabaf7f7fb11.png
Answers to Odd Numbered Exercises for the Reciprocal Function: Reciprocal Function
91. \(y = \frac\); Shift right \(2\) units; domain: \((−∞, 2) ∪ (2, ∞)\); range: \((−∞, 0) ∪ (0, ∞)\) 75fa23d883d738eeb47a020057002b8f.png 93. \(y = \frac\); Shift up \(5\) units;
domain: \((−∞, 0) ∪ (0, ∞)\);
range: \((−∞, 1) ∪ (1, ∞)\) 53d3a12d61be06d8913ae13668760ebb.png\( \star \)
95. \(y = \frac\); Shift left \(1\) unit and down \(2\) units; domain: \((−∞, −1) ∪ (−1, ∞)\); range: \((−∞, −2) ∪ (−2, ∞)\) 0eac4ad67881e57bfa8e7dc46c933e8e.png97
97. Left \(2\) units, reflect over x-axis #99 Left \(1\) unit, reflect over x-axis, up \(2\) units. 2.3E graph #99.png

D: Graph Transformations of a Graph

Exercise \(\PageIndex\) \( \bigstar\) Use the graph of \(f(x)\) shown in the Figure below to sketch a graph of each transformation of \(f(x)\).

 Graph of \(f(x)\).Given the graph of \(f(x)\) on the right, sketch the graph for the following transformations of \(f\) 101. \(h(x)=2^x-3\) 102. a) \(g(x)=2^x+1\) b) \(w(x)=2^x−1\) 2.3e #103.pngGiven the graph of \(f(x)\) on the right, sketch the graph for the following transformations of \(f\) 103. a) \(g(x)=−f(x)\) b) \(g(x)=f(x−2)\) 104. a) \(g(x)=f(x)−2\) b) \(g(x)=f(x+1)\)
106. Given the graph of \(f(x)\) below, sketch the graph for the following transformations of \(f\) Answers to Odd Exercises:

2.3e #101.png

CNX_Precalc_Figure_01_05_235.jpg

CNX_Precalc_Figure_01_05_237.jpg

E: Match transformations of functions with graphs

\( \bigstar\) Match the graph to the function definition.

108. \(f(x) = |x − 2| − 2\)

110. \(f(x) = |x − 2| + 1\)

112. \(f(x) = |x + 2| − 2\)

caf84d0d27db512ef90d11b59b6c37dc.png

47088a9efd6814511cb0fc8d233b539f.png

2fe54b1c80ea84f0f721462f90455c0b.png

d44d62205d34ed371aad179b77c54a81.png

3622a0d2256166544a122ecd7156de36.png

Match the graph to the given function definition.

113. \(f ( x ) = - 3 | x |\)

114. \(f ( x ) = - ( x + 3 ) ^ < 2 >- 1\)

115. \(f ( x ) = - | x + 1 | + 2\)

116. \(f ( x ) = - x ^ < 2 >+ 1\)

117. \(f ( x ) = - \frac < 1 > < 3 >| x |\)

118. \(f ( x ) = - ( x - 2 ) ^ < 2 >+ 2\)

039e6f4a86d07a578660882bccf7ea40.png 16b19343fd01aecf51c1cdea8af3ee21.png

26cdff42b4eb188a4512c934fd59f9e5.png 75295519ff6aaa13dced0dc6ed6e2ef7.png

Answers to Odd Exercises:

part 1 answers 107e, 109d, 111f, part 2 Answers: 113.b, 115.d, 117.f

F: Construct equations from graphs of transformed basic functions

\( \bigstar\) Write an equation for each graphed function by using transformations of the graphs of one of the toolkit functions.

Graph of a cubic function.

130. (a)

Graph of a square root function.

130. (b)

Graph of an absolute function.

Answers to Odd Exercises:
119. \(f(x)=|x-3|−2\)
121. \(f(x)=\sqrt−1\)
123. \(f(x)=(x-2)^2\)
125. \(f(x)=|x+3|−2\)
127. \(f(x)=−\sqrt\)
129. \(f(x)=−(x+1)^2+2\)

\( \bigstar\) Write an equation that represents the function whose graph is given.

2.3E graph #131.png

2.3E graph #132.png

2.3E graph #133.png

2.3E graph #134.png

2.3E graph #135.png

2.3E graph #136.png

2.3E graph #137.png

2.3E graph #138.png

2.3E graph #139.png

Answers to Odd Exercises:
131. \(f ( x ) = \tfrac \sqrt < x +3 >\) 133. \(f ( x ) = \sqrt(2x-5) \)
135. \(f ( x ) = 2 | x-2 | - 3\)
137. \(f ( x ) = -\tfrac ( x + 2 )^3 +4\) 139. \( f(x) = \dfrac + 4\)

G: Construct a formula from a description

\( \bigstar\) Write a formula for the function with the following transformations

141. Write a formula for the function obtained when the graph of \(f(x)=|x|\) is shifted down \(3\) units and right \(1\) unit.

142. Write a formula for the function obtained when the graph of \(f(x)=\dfrac\) is shifted down \(4\) units and right \(3\) units.

143. Write a formula for the function obtained when the graph of \(f(x)=\dfrac\) is shifted up \(2\) units and left \(4\) units.

144. Write a formula for the function obtained when the graph of \(f(x)=\sqrt\) is shifted up \(1\) unit and left \(2\) units.

145. The graph of \(f(x)=|x|\) is reflected over the \(y\)-axis and horizontally compressed by a factor of \(\dfrac\).

146. The graph of \(f(x)=\sqrt\) is reflected over the \(x\)-axis and horizontally stretched by a factor of \(2\).

147. The graph of \(f(x)=\dfrac\) is vertically compressed by a factor of \(\dfrac\), then shifted left \(2\) units and down \(3\) units.

148. The graph of \(f(x)=\dfrac\) is vertically stretched by a factor of \(8\), then shifted to the right \(4\) units and up \(2\) units.

149. The graph of \(f(x)=x^2\) is vertically compressed by a factor of \(\dfrac\), then shifted to the right \(5\) units and up \(1\) unit.

150. The graph of \(f(x)=x^2\) is horizontally stretched by a factor of \(3\), then shifted left \(4\) units and down \(3\) units.

Answers to Odd Exercises: